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Synopsis 

A constitutive equation, previously derived for dilute, monodisperse solutions of 
linear macromolecules, is extended to include polydisperse solutions. This result, which 
represents a coupling of continuum and molecular theory, realistically portrays the effects 
of molecular weight and molecular weight distribution on mechanical behavior. In- 
trinsic viscosity-shear rate data are well described, and with certain semiempirical 
modifications the equation also fits normal stress and dynamic viscosity data for slightly 
more concentrated solutions. Some unusual effects associated with the characterization 
of macromolecular degradation, in studies of turbulent drag reduction, are also explained. 

INTRODUCTION 

Dilute solution properties of linear macromolecules a t  small deformations 
For example, the have long been used for molecular characterization. 

Mark-Houwink-Sakurada' equation 

[TI0 = KM" (1) 

relates the intrinsic viscosity a t  zero shear rate to the molecular weight M .  
The exponent a is a measure of polymer-solvent interaction, the well- 
known condition a = 0.5 corresponding to  a theta solvent.' Increasing 
values of (a - 0.5) are associated with increasingly better solvents. 

This rather settled state of affairs with regard to low shear rate or small 
deformation properties contrasts sharply with the situation for finite de- 
formation~.~-~ The Rouse-Zimm bead-spring theories are a case in point: 
these theories provide an excellent description of small-amplitude, dynamic 
properties of dilute polymer solutions; but only with significant modifica- 
tion can they be used to  describe such effects as the shear dependence of 
intrinsic viscosity.2-3 

Perusal of the polymer literature suggests that none of these modified 
molecular theories (which give reasonable predictions for finite deforma- 
tions) are generally accepted. In addition, the theories are often unexpres- 
sible in explicit form; that is, an explicit relation between the stress tensor, 
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the flow field, and characteristic molecular properties (concentration, 
molecular. weight, molecular weight distribution, etc.). This latter point 
limits their usefulness in the analysis of such phenomena as flow stability or 
turbulent drag reduction. 

A number of explicit constitutive equations do exist, 'these being derived 
from continuum-mechanical considerations, and hence presumably apply 
to both concentrated and dilute polymer solutions. Although such equa- 
tions can describe finite deformation behavior fairly accurately, the large 
number of associated phenomenologic constants detracts from their use- 
fulness, especially with regard to polymer characterization. Thus, for 
many purposes, the available theories of the mechanical behavior of dilute 
polymer solutions are quite unsatisfactory. 

CONSTITUTIVE EQUATION 

We recently developed the following constitutive equation, using a com- 
bined continuum-molecular theorys*' : 

5h Nc 
at M 4 + 8 - = 2 - kTB(1 - e)D 

where S is the stress tensor, ts is the solvent viscosity, 8 is a relaxation time, 
k is Boltamann's constant, T is the absolute temperature, and 4 is the 
contribution to S from the polymer molecules. 

These results represent a modification of the well-known dumbbell 
equationss and reduce to those equations for e = 0.6J Here, e is a constant 
which arises from the continuum aspects of our theory and consequently 
does not have a specific molecular interpretation. Physically, eD.r may 
be interpreted as the difference between the actual rate of change of the 
end-to-end vector r of a linear macromolecule, and that rate of change as 
calculated from the simplified dumbbell model. This point is discussed 
more fully in reference 6.  The value of e is subject to the restriction 

Equations (2) to (4) have been shown to describe qualitatively many 
properties of dilute polymer solutions.' Here, we generalize these expres- 
sions to account for polydispersity and present comparisons of the corre- 
sponding predictions with experimental data. The results are encouraging 
and clearly demonstrate the advantages and utility of this new constitutive 
model. 
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POLYDISPERSITY CORRECTION 
It is assumed that eq. (2) applies to each molecular weight fraction, the 

total contribution to S being the sum over all fractions. Thus, we have 

S = - p  6 + 27,D + ZT# (7) 
where i refers to a particular molecular weight species. The summation in 
eq. (7) may be converted to an integration via an appropriate molecular 
weight distribution. For this purpose, we employ the Schulz-Zimm dis- 
tribut ion15 e 9 - 1 3  namely, 

where dn is the fraction of molecules with molecular weights in the range 
M ,  M + dM; M ,  and M ,  are number- and weight-average molecular 
weight, respectively; and z is defined by 

The z values may range from - 1 to infinity, corresponding to M w / M ,  - 
03 and M , / M ,  4 1; z = 0 yields the commonly observed most probable 
distribution of molecular weights (M, /M,  = 2 ) ,  while negative z values 
are required to  characterize the broader distributions common to most 
free-radical polymerizations. 

MODEL PREDICTIONS AND COMPARISON WITH EXPERIMENT 
Intrinsic Viscosity 

The development of eqs. (2) to  (9) was based on the supposition that 
intermolecular interactions are negligible. The intrinsic viscosity, repre- 
senting a viscometric parameter extrapolated to infinite dilution, would 
thus seem to be an especially pertinent measure with which to compare the 
predictions of our model. These may be expressed in the form 

= 1 - B 0 2 +  . . .  1 
[?I/lalo = + Bp2 

4 2  - €) 

(1 - €)Z B =  

for monodisperse solutions, and in the form 

Jm (c) exp{ - k?..-!? M }  dM 
[qI / [q lo  = r ( z  + a + 2) 0 i + B ~ Z  MW 

KMwar(Z + a + 2)  
( z  + 2 ) Y Z  + l)! h l o  = 
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Fig. 1. Plot of [7] / [?lo vs. log (8): (-) theoretical prediction for monodisperse solu- 
tions; (- - - -) theoretical prediction for rigid ellipsoid model with axial ratio p rn in- 
dicated. 

for polydisperse solutions. 8, often referred to as the “generalized shear 
In  the derivation of eqs. (11) and (12), 

we have used the relation 
is equal to [q]&q,G/NkT. 

which may easily be obtained from eqs. (1) to (4). In addition, the 
Mark-Houwink-Sakurada constants K and a were assumed to be inde- 
pendent of molecular weight (strictly speaking, this is only true for a theta 
~olvent,’~,’~). There seems to be ample precedent for this a s ~ u m p t i o n . ~ ~ ~ * ’ ~  

To illustrate the predicted results, eqs. (10) and (11) have been plotted 
in Figures (1) to (3). Figure 1 shows the influence of E (which might aptly 
be called a “non-Newtonian parameter”) on the [q]/ [ q ] o - ~ e ~ ~ ~ - P  relation- 
ship for monodisperse solutions. Clearly, larger values of e result in an 
earlier departure from the Newtonian behavior predicted by the elastic 
dumbbell model (E = 0). Also plotted in Figure 1 are the results of the 
rigid ellipsoid modelS~16 for various values of the axial ratio p .  This model 
has been used with some success by Suzuki, Kotaka, and Inagakis The 
figure indicates that the two theories agree closely for low values of 8. 
At high rates of shear, the rigid ellipsoid model predicts a nonzero as- 
ymptotic value for [TI/ [qlO, in agreement with experimental results. Our 
model, however, predicts a zero value for this limit. This deficiency is 
apparently common to many molecular theories.16 
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Fig. 2. Plot of [ q ] / [ q ] ~  vs. log (aw) for polydisperse solutions with molecular weight dis- 

tributions as indicated. 
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Fig. 3. Plot of [ q ] / [ &  vs. log (a,,,) for values of a as indicated. 

Figure 2 illustrates the effects of polydispersity. Here, we have used 
the typical values K = 10X10-5 dl/g, a = 0.7, T = 25"C, M ,  = 1.2X106, 
q s  = 0.005 P, and e = 0.02. These results demonstrate that the more 
polydisperse solutions show pronounced non-Newtonian behavior at lower 
values of 8, (aw = [q]&,qsG/NkT) and exhibit a smaller (negative) slope in 
the high shear rate region. Both effects have been observed experimen- 
tally for concentrated polymer solutions and melts. lo 

The effect of polymer-solvent interaction (as characterized by the Mark- 
Houwink-Sakurada exponent a) on the [ q ] /  [q]o-versus/3, relation is illus- 
trated in Figure 3. Here, we have chosen the same values for K ,  T, M,, 
qs, and e as in Figure 2; Z is equal to  4.0. From a qualitative viewpoint, 
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TABLE I 
Effect of Molecular Weight and Solvent Power on c 

Molec- 
ular 

Temp., weight, [do, 
Polymer Solvent “C X10-6 dl/g ana E ,  X10* 

~ ~~ 

Polystyrene benzene 30 6.0 11.65 5.85 0.93 
Aroclor 40 6.0 4.50 2.26 0.55 
benzene 30 3.16 7.04 4.96 1.26 
benzene 30 7.14 13.50 6.31 2.63 

25.9 
6.06 toluene 25 1.24 2.44 - 

toluene 25 1.82 3.175 - 2.74 

Poly(a-methylstyrene) toluene 25 0.69 1.49 - 

1.0 *- 

0.9 I \ 

A 
Mw = 1.82 x106 

-1.0 -0.5 0.0 
log (8, 

Fig. 4. Plot of [ q ] / [ &  vs. log (8) for various molecular weights of poly(a-methyl- 
styrene) in to1uene;b (- - - - -) theoretical prediction for monodisperse solutions. 

these results also agree quite nicely with generally accepted experimental 
b e h a v i ~ r . ~ , ~ ~ ~ ~  

The remainder of this section is devoted to a comparison of eqs. (10) and 
(11) with experiment. Our objectives are an examination of the predictive 
ability of our theory, and some qualitative insight into the molecular 
weight and solvent power dependence of 8 .  

Noda and co-workers1’ have studied the effect of molecular weight on the 
IT]/ [~]rversus-B relationship. The solutions investigated were various 
molecular weights of poly(a-methylstyrene) in toluene, with very sharp 
distributions ( M , / M ,  < 1.01). Their results are plotted in Figure 4. 
Equation (10) wm compared with these data (dashed lines in Fig. 4) by 
determining the value of e that gave the “best looking” fit. Values of c 

thus obtained are tabulated in Table I. We see that the theory describes 
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the data fairly well for the lowest molecular weight fraction, and very well 
for the higher fractions. Note that the lower molecular weights exhibit 
non-Newtonian effects earlier (i.e., smaller p), thus implying a decrease in 
e with increasing molecular weight. Noda et al. explain these results as a 
manifestation of chain rigidity (or “internal viscosity”) which becomes in- 
creasingly important for short chain lengths.” Inasmuch as our theory 
takes no account of such an effect, it is significant that the agreement of 
theory and experiment improves at larger molecular weights. 

The [q]-versus-p, relations for polystyrene fractions in various solvents 
have been reported by Suzuki, Kotaka, and Inagaki? Their data for four 
solutions are plotted in Figures 5 and 6. Figure 5 illustrates the. effect 
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Fig. 5. Plot of [ T ] / [ T ] o  vs. log (&) for solutions of polystyrene ( M ,  = 6.0 X 108) in 
benzene (0) and Aroclofl (A); (--) theoretical prediction for polydisperse solutions. 

of solvent power on [~]/[q]rversus-pw, a “powerful” solvent being a very 
good one for the particular polymer species in question. The solutions 
are polystyrene ( M ,  = 6.OX1O6, M,/M, = 1.22) in benzene, a good sol- 
vent, and Aroclor 1248 (Monsanto Company), a fair solvent. The hy- 
drodynamic expansion factors are aV3 = 5.85 and 2.26 for benzene and 
Aroclor, respectively. The predictions of eq. (11) are represented by the 
solid lines. Here, literature values of a (=0.77 for benzene,’ 0.64 for 
Aroclor18) were used, and K (= 7.145X 
for Aroclor) was obtained from eq. (12), using experimental values of [17]0. 

Values of e were determined via a nonlinear least-squares computer pro- 
gram (supplied through the courtesy of Professor A. w. Westerberg) and 
are tabulated in Table I. As is apparent from the figure, eq. (11) fits the 
data quite well for low to moderate values of p. 

dl/g for benzene, 2.109X 
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Figure 6 illustrates the effects of molecular weight on [q]/[q]~versus-@, 
for two fractions of polystyrene ( M ,  = 3.16X1O6, M ,  = 7.14X106) in 
benzene. The distribution widths for these fractions were not given, thus 
precluding the application of eq. (11) to the data. In  this case, we de- 
cided to use eq. (10) (for monodisperse solutions), primarily to  gain some 
insight into the molecular weight dependence of E. Again, values of e 
were determined which gave the best-looking fit to the data. The result- 
ing predictions are given by the dashed lines in the figure, and the correspon- 
ding values of E are tabulated in Table I. 
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Fig. 6. Plot of [ 7 ] / [ 7 ] 0  vs. log (a,) for solutions of polystyrene in benzene? (0) M ,  = 
7.14 X lo6; (A) M ,  = 3.16 X 106; (- - - - -) theoreticd prediction for monodisperse 
solutions. 

Turning to  Table I, we see that e is an increasing function of solvent 
power for the polystyrene-benzene-Aroclor system. In addition, e de- 
creases with M for poly(a-methylstyrene) and increases with M for poly- 
styrene. As noted earlier, the decrease in e for poly(a-methylstyrene) 
with increasing M may be a manifestation of chain rigidity. The increase 
of e with M for polystyrene, which has greater segmental flexibility, is 
probably the more typical behavior of linear macromolecules. 

In  summary, our theory seems to portray in a fairly accurate manner- 
for low values of @-the intrinsic viscosity-shear rate behavior of flexible 
linear macromolecules, as a function of molecular weight, molecular weight 
distribution, and polymer-solvent interaction. The non-Newtonian pa- 
rameter e increases with solvent power for a given molecular weight, at 
least for the polystyrene-benzene-Aroclor system. (Note that aq3 in- 
creases with M in a good solvent.) The molecu1a.r weight dependence of e 
is still somewhat unclear. 
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Relation to Rouse Theory 
Equations (2) to (4) lead to the following predictions for the dynamic 

storage and loss moduli: 

where w R  = Ow and R is the gas law constant (Nk). These expressions are 
identical in form, with the exception of the factor (1 - e), to the Rouse or 
Zimm theory predictions for the case of a single “~ubrnokcule’~.~ In  
Figure 7 we have plotted eqs. (14) and (15) for e = 0.01, along with the 

log ((OR) 

Fig. 7. Theoretical prediction of log (GR’) and log (GR”) vs. log (OR):  (-----) Rouse 
theory; (-) present monodisperse theory. 

results from the Rouse theory (for P submolecules, as P + ”. The 
theories agree quite well for low values of w R ,  but diverge drastically as 
OR increases above 1. This behavior is to be expected, as a consequence of 
the single relaxation time in our model, and indicates quite clearly that to 
describe small amplitude, dynamic data over wide ranges of frequency, 
eqs. (2) to (4) must be generalized to a multibead model (with a large 
number of relaxation times3). 

Complex Viscosity, Normal Stresses 
With the exception of intrinsic viscosity, very few rheological measure- 

ments of truly “dilute” polymer solutions have been reported. In order to 
utilize measurements of several rheological properties over wide ranges of 
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G (set-9 

Fig. 8. Plot of 7 and N I  vs. G for polystyrene in Aroclor:10 experimental results for 
(0)  c = 0.0144 g/cc and (.) c = 0.036 g/cc; (-) theoretical prediction for poly- 
disperse solutions. 
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Fig. 9. Plot of 7' and G' vs. o for polystyrene in Arocl0r:~9 experimental results for 
(0) c = 0.0144 g/cc and (W)  c = 0.036 g/cc; (-) theoretical prediction for poly- 
disperse solutions. 

shear rate (for a single polymer solution), we must be prepared to relax 
somewhat the restriction of negligible intermolecular interaction. 

Asharel9 has recently published some careful measurements of non- 
Newtonian viscosity, primary normal stress difference, dynamic viscosity, 
and dynamic storage modulus for several solutions of polystyrene in 
Aroclor. His results for M ,  = 1.8X106, M,/M, = 1.2, and c = 0.0144 
and 0.036 g/cc are plotted in Figures 8 and 9. These data must certainly 
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reflect some effects of intermolecular interaction, and a t  concentration 
levels of well over 1%, it is not clear whether or not such effects are neg- 
ligible. 

Nevertheless, our model was compared with Ashare's results, and it was 
found that good agreement could be obtained if qs  in the theoretical equa- 
tions were replaced throughout by a variable, ti. I n  other. words, the eflects 
of intermolecular interaction could be accounted for by assuming that the solvent 
i s  eflectively "thickened" by the factor +j/qs. The Mark-Houwink-Sakurada 
constants, however, still refer t o  the actual solvent. 

It was also found necessary to  consider the molecular weight dependence 
of E (clearly, E would be anticipated to  depend on M ) .  This was assumed 
of the form 

4 2  - E )  

(1 - E)2 B =  = yM" 

as suggested, e.g., by Suzuki, Kotaka, and InagakL5 

are found to  be: 
With these substitutions, the expressions for q, N I ,  N2, 7' and G' [ = wq8) 

X exp{ -(' 2, M }  dM (17) 
MW 

~ C ( G + ~ K ) ~  z + 2 z+2 Mz+2a+2(1 + yM")'/' (x) 1 + [+jKG:LF+C/z 1 
N -  

- N k T ( z  + l)! 

X exp{ -(' 2, M }  dM (18) 
MW 

X exp{ -(' 2, M }  dM (20) 
MW 
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TABLE I1 
Model Parameters Used in Prediction of q, NI, Nz, q', 

and G' for Polystyrene in Aroclor 

Concentra- .. tion, 701 98, rl, 
g/cc P P P Y C 

0.0144 35. 3 .  7.38 9.39 x 10-so 4.41 
0.036 335. 3. 32.3 4.48xlO-21 3.08 

I 

/ 
g j  c 

u 10-1 10" 10 10- 
10" 

G (sec-1) 

Fig. 10. Theoretical prediction of NZ vs. G for polydisperse solutions. 

Literature values of K and a for the polystyrene-Aroclor system were 
used ( K  = 2.63X10-4 dl/g, a = 0.6418), and +j was obtained directly from 
eq. (22): 

where 9 0  is the experimental zero-shear viscosity; y and u were evaluated 
by curve fitting eq. (17) to the experimental viscosity data, using the pre- 
viously mentioned nonlinear least-squares analysis. Values of all param- 
eters are listed in Table 11. These values were then used to calculate N I ,  
Nz, o', and G'; the results are represented by the solid lines in Figures 8 to 
10. 
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As is evident from these curves, the overall fit of our model to the data is 
fair to good. The viscosity data are well described, except a t  the higher 
shear rates. The normal stress predictions are somewhat high, except at 
high shear rates, where they cross the experimental curves. The q’ and G‘ 
results dip below the data as w increases, the predictions for G‘ being some- 
what superior to those for TJ’, as anticipated from Figure 7 (recall, q’ = 
G”/o). It should be emphasized that the overall predictions of our model 
could have been improved had we chosen to fit all four functions simulta- 
neously. However, a more severe test of the model is obtained by fitting 
viscosity data exclusively and then predicting N1, TJ‘, and G’. 

Calculated values of N2 have been plotted in Figure 10; experimental 
results were not available. Note that N2 is negative and much smaller in 
magnitude than N1, in agreement with most available data.20-21 

Weissenberg Number 

The so-called “elasticity” of a polymer solution may be characterized by 
the dimensionless Veissenberg number, N,, = N~/(TJ - qs)G, where G is 
the shear rate.22 Experimentally, N,, is known to increase (i.e., more 
elastic behavior) with molecular weight, breadth of molecular weight dis- 

Fig. 11. Theoretical prediction of N ~ / T  vs. log (G) for indicated molecular weights: 
( - - - - -  ) M,/M,  = 5.0; (-) Mw/Mm = 1.2. 

tribution, and shear rate.23 As illustrated in Figure 11, our theory predicts 
precisely this behavior, offering one more example, we feel, of the essential 
correctness of the constitutive equation. (In Fig. 11, the values chosen for 
the parameters were K = 10X10-5 dl/g, a = 0.7, TJ, = 0.005 P, and E = 
0.02). 
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Drag Reduction and Elongational Viscosity 

It has been s ~ g g e s t e d ~ ~ - ~ ~  that turbulent drag reduction is a consequence 
of the unusually high elongational viscosity exhibited by dilute polymer 
solutions.n For example, Bakewell’s work (as discussed by Seyer and 
M e t ~ n e r * ~ )  indicates that the turbulent eddy structure near a pipe wall may 
be considered as a transient “stretching” motion, and hence large values of 
elongational viscosity i j  (a measure of resistance to  s t r e t ~ h i n g ~ ~ , ~ * )  would 
tend ultimately to  lower the drag. 

We recently published a study of the molecular weight-time dependence 
of i j ,  after the inception of steady elongational flow in an initially unstressed 
fluid.28 This result, for monodisperse solutions, dramatically illustrated 
the sensitivity of elongational viscosity to  molecular weight. Here, we 
extend the analysis to  polydisperse solutions, in order t o  examine the effects 
of molecular wei!:ht distribution on i j .  

The results of Paterson and Abernathy* suggest that macromolecular 
degradation in poly(ethy1ene oxide) solutions may be pictured somewhat 
as illustrated in Figure 12. Here, the Schulz-Zimm distribution is plotted 
for z = 1.0 and various values of M,. Thus, an initially broad distribution 
( M ,  = l.0X1Oe) is preferentially degraded a t  its high molecular weight 
end, resulting in successive shifts t o  distributions similar to  those illustrated 
for M ,  = 5.0X105, 2.5X105, and l.0X105. The effect of this degradation 
process on elongational viscosity may readily be determined for our model. 
For the case of sudden inception of steady elongational flow of constant 
stretch rate r, in an initially unstressed fluid, we find 

Mz+a+l exp{ -(’ + 2, M }  
M ,  ~_ - - 75 

3(110 - lls) r (z  + u + 2) [ i  - 200 - e > r i [ i  + e(i  - t>ri 

TABLE I11 
Effect of Molecular Weight Distribution on Intrinsic 

Viscosity and Elongational Viscosity 
~~ ~ ~ 

- %) 
(r = 2000 sec-1, 

M,, x 10-6 M,, x 10-6 [ d o ,  dl/g t = 0.008 see) 

1.00 1.50 1.33 1.02 
2.50 3.75 2.71 23.2 
5.00 7.50 4.65 10800. 

10.0 15.0 7.98 312000. 
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M, = 5.0 x 10 
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0 I 2 3 4 5 6 7 8 

M I O - ~  
Fig. 12. Schulz-Zimm distribution n ( M )  vs. molecular weight for z = 1.0 and various 

number-averaged molecular weights. 

In  Table I11 we have listed values of i j /3(70 - vs) and [q]O, for the series 
of molecular weight distributions illustrated in Figure 12. These values 
correspond to  K = 1.25X10-4, a = 0.78, ?lS = 0.81 cP, t = 0.008 sec, and 
e = 0.4, the values used in our earlier study of monodisperse solutions.28 
It is clear that the shifts in molecular weight distribution lead to large 
changes in i j ,  but only minor changes in [q]O. This would explain the find- 
ings of Paterson and A b e r n a t h ~ * ~  and E i ~ h s t a d t ~ ~  that a polymer solution 
may show large decreases in drag-reducing ability due to  shear degradation, 
but only insignificant changes in intrinsic viscosity. 

SUMMARY 
A constitutive equation, previously derived for dilute, monodisperse solu- 

tions of linear macromolecules, has been extended to account for poly- 
dispersity. This result, which represents a coupling of ideas from con- 
tinuum mechanics and molecular theory, realistically portrays the effects 
of molecular weight, molecular weight distribution, and polymer-solvent 
interaction on mechanical behavior. By introducing the concept of “eff ec- 
tive solvent viscosity” to  account for intermolecular interactions, the 
theory may also be applied to  moderately concentrated solutions. A 
number of examples of the utility of the theory are presented. 
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